Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38642000

RESUMO

BACKGROUND AND AIM: Fructooligosaccharide (FOS) supplementation can stimulate beneficial intestinal bacteria growth, but little is known about its influence on training performance. Therefore, this study analyzed FOS and exercise effects on gut microbiota and intestinal morphology of C57Bl/6 mice. METHODS: Forty male mice were divided into four groups: standard diet-sedentary (SDS), standard diet-exercised (SDE), FOS supplemented (7.5% FOS)-sedentary (FDS), and FOS supplemented-exercised (FDE), n = 10 each group. Exercise training consisted of 60 min/day, 3 days/week, for 12 weeks. RESULTS: SDE and FDE groups had an increase in aerobic performance compared to the pretraining period and SDS and FDS groups (P < 0.01), respectively. Groups with FOS increased colonic crypts size (P < 0.05). The FDE group presented rich microbiota (α-diversity) compared to other groups. The FDE group also acquired a greater microbial abundance (ß-diversity) than other groups. The FDE group had a decrease in the Ruminococcaceae (P < 0.002) and an increase in Roseburia (P < 0.003), Enterorhabdus (P < 0.004) and Anaerotruncus (P < 0.006). CONCLUSIONS: These findings suggest that aerobic exercise associated with FOS supplementation modulates gut microbiota and can increase colonic crypt size without improving endurance exercise performance.

2.
Biology (Basel) ; 12(6)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37372128

RESUMO

MMPs are enzymes involved in SARS-CoV-2 pathogenesis. Notably, the proteolytic activation of MMPs can occur through angiotensin II, immune cells, cytokines, and pro-oxidant agents. However, comprehensive information regarding the impact of MMPs in the different physiological systems with disease progression is not fully understood. In the current study, we review the recent biological advances in understanding the function of MMPs and examine time-course changes in MMPs during COVID-19. In addition, we explore the interplay between pre-existing comorbidities, disease severity, and MMPs. The reviewed studies showed increases in different MMP classes in the cerebrospinal fluid, lung, myocardium, peripheral blood cells, serum, and plasma in patients with COVID-19 compared to non-infected individuals. Individuals with arthritis, obesity, diabetes, hypertension, autoimmune diseases, and cancer had higher MMP levels when infected. Furthermore, this up-regulation may be associated with disease severity and the hospitalization period. Clarifying the molecular pathways and specific mechanisms that mediate MMP activity is important in developing optimized interventions to improve health and clinical outcomes during COVID-19. Furthermore, better knowledge of MMPs will likely provide possible pharmacological and non-pharmacological interventions. This relevant topic might add new concepts and implications for public health in the near future.

3.
Front Endocrinol (Lausanne) ; 13: 927170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966101

RESUMO

Obesity is one of the major pandemics of the 21st century. Due to its multifactorial etiology, its treatment requires several actions, including dietary intervention and physical exercise. Excessive fat accumulation leads to several health problems involving alteration in the gut-microbiota-brain axis. This axis is characterized by multiple biological systems generating a network that allows bidirectional communication between intestinal bacteria and brain. This mutual communication maintains the homeostasis of the gastrointestinal, central nervous and microbial systems of animals. Moreover, this axis involves inflammatory, neural, and endocrine mechanisms, contributes to obesity pathogenesis. The axis also acts in appetite and satiety control and synthesizing hormones that participate in gastrointestinal functions. Exercise is a nonpharmacologic agent commonly used to prevent and treat obesity and other chronic degenerative diseases. Besides increasing energy expenditure, exercise induces the synthesis and liberation of several muscle-derived myokines and neuroendocrine peptides such as neuropeptide Y, peptide YY, ghrelin, and leptin, which act directly on the gut-microbiota-brain axis. Thus, exercise may serve as a rebalancing agent of the gut-microbiota-brain axis under the stimulus of chronic low-grade inflammation induced by obesity. So far, there is little evidence of modification of the gut-brain axis as a whole, and this narrative review aims to address the molecular pathways through which exercise may act in the context of disorders of the gut-brain axis due to obesity.


Assuntos
Eixo Encéfalo-Intestino , Microbiota , Animais , Exercício Físico , Obesidade/metabolismo , Peptídeo YY
4.
Artigo em Inglês | MEDLINE | ID: mdl-35805470

RESUMO

Aging is a natural process of organism deterioration, which possibly impairs multiple physiological functions. These harmful effects are linked to an accumulation of somatic mutations, oxidative stress, low-grade inflammation, protein damage, and mitochondrial dysfunction. It is known that these factors are capable of inducing telomere shortening, as well as intestinal dysbiosis. Otherwise, among the biological mechanisms triggered by physical exercise, the attenuation of pro-inflammatory mediators accompanied by redox state improvement can be the main mediators for microbiota homeostasis and telomere wear prevention. Thus, this review highlights how oxidative stress, inflammation, telomere attrition, and gut microbiota (GM) dysbiosis are interconnected. Above all, we provide a logical foundation for unraveling the role of physical exercise in this process. Based on the studies summarized in this article, exercise training can increase the biodiversity of beneficial microbial species, decrease low-grade inflammation and improve oxidative metabolism, these factors together possibly reduce telomeric shortening.


Assuntos
Microbioma Gastrointestinal , Disbiose , Exercício Físico , Humanos , Inflamação , Telômero
5.
Artigo em Inglês | MEDLINE | ID: mdl-35162875

RESUMO

Since the World Health Organization declared the global COVID-19 state of emergency in early 2020, several vaccine candidates have emerged to control SARS-CoV-2, and some of them have been approved and implemented in vaccination campaigns worldwide. Although clinical trials for these vaccines have been carried out using highly controlled methods with accurate immunological tests, clinical questionnaires did not include questions concerning the physical activity profile among volunteers. It has been well established that physical activity plays a pivotal role in the immune response after vaccination, led by the activation of cytokines, antibodies, and cells. This concept should have been considered when evaluating the efficacy of COVID-19 vaccine candidates, particularly in elderly and obese people. Here, we discuss data from the literature providing strong evidence regarding the importance of analyzing physical activity parameters to improve the accuracy of clinical trials on assessing the efficacy of vaccine candidates.


Assuntos
COVID-19 , Vacinas , Idoso , Vacinas contra COVID-19 , Exercício Físico , Humanos , SARS-CoV-2 , Vacinação
6.
Arch Physiol Biochem ; 128(6): 1630-1636, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32686511

RESUMO

The consumption of high-protein diets (HPD) is associated with resistance training (RT) due to effects on metabolism. However, little is known about these effects on cardiac tissue. This study aimed to investigate effects of HPD and RT on cardiac biomarkers. 18 rats were divided into normo-protein (NPD), and HPD groups: NPD-Control, NPD-RT, HPD-Control, and HPD-RT. Interleukin-6 (IL-6), tumour necrosis factor alpha (TNF-a), nitric oxide (NO), activity of metalloproteinase-2 (MMP-2), and vascular factor (VEGF) were analysed. RT was effective in regulating body weight, increasing strength, and reducing food consumption (p < .05). HPD induces higher levels of interleukin 6 (p = .0169), and lowers NO (p < .0001). When associated with RT, the HPD decreases levels of tumour necrosis factor alpha, while enhances NO, and MMP activity (p < .05). The association of RT with HDP decreases inflammatory parameters and indicates an enhancement in the molecular parameters of cardiac tissue.


Assuntos
Dieta Rica em Proteínas , Treinamento Resistido , Animais , Humanos , Ratos , Biomarcadores , Interleucina-6 , Metaloproteinase 2 da Matriz , Óxido Nítrico , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular
7.
Front Nutr ; 8: 627289, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763441

RESUMO

Endurance-sport athletes have a high incidence of gastrointestinal disorders, compromising performance and impacting overall health status. An increase in several proinflammatory cytokines and proteins (LPS, I-FABP, IL-6, IL-1ß, TNF-α, IFN-γ, C-reactive protein) has been observed in ultramarathoners and triathlon athletes. One of the most common effects of this type of physical activity is the increase in intestinal permeability, known as leaky gut. The intestinal mucosa's degradation can be identified and analyzed by a series of molecular biomarkers, including the lactulose/rhamnose ratio, occludin and claudin (tight junctions), lipopolysaccharides, and I-FABP. Identifying the molecular mechanisms involved in the induction of leaky gut by physical exercise can assist in the determination of safe exercise thresholds for the preservation of the gastrointestinal tract. It was recently shown that 60 min of vigorous endurance training at 70% of the maximum work capacity led to the characteristic responses of leaky gut. It is believed that other factors may contribute to this effect, such as altitude, environmental temperature, fluid restriction, age and trainability. On the other hand, moderate physical training and dietary interventions such as probiotics and prebiotics can improve intestinal health and gut microbiota composition. This review seeks to discuss the molecular mechanisms involved in the intestinal mucosa's adaptation and response to exercise and discuss the role of the intestinal microbiota in mitigating these effects.

8.
Clin Nutr ESPEN ; 42: 41-52, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33745615

RESUMO

BACKGROUND & AIMS: The gut microbiome is an essential factor for the health of the host. Several factors may alter the gut's microbiota composition, including genetic factors, lifestyle, aging, and dietary intervention. This process can be an essential element in the prevention and treatment of diseases associated with microbiome dysfunction through appropriate dietary interventions. Based on this context, a systematic review was carried out in order to assess the effect of dietary intervention on the profile of the gut microbiota throughout different stages of life. METHODS: The systematic review was conducted following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA), with the eligibility criteria following the principle of PICOS. The literature search was carried out in 2019 throughout PubMed/MEDLINE, Scopus, and Science Direct. Thus, 1237 studies were selected, and 40 articles were included by criteria. RESULTS: According to the level of evidence of Centre for Evidence-Based Medicine (OCEBM), 21 studies reached the level of evidence B1, 15 articles were classified with B2, and four articles with B3. No dietary intervention was applied at all stages of life, nor with similar proportions of intervention. No dietary intervention was applied at all stages of life, nor with similar proportions of intervention. On the other hand, dietary interventions alter the intestinal microbiota in different pathological realities. CONCLUSIONS: Different dietary interventions change the microbiome composition at all stages of life in healthy and pathological individuals. However, more clinical studies are needed to identify the specifics of each stage in response to interventions.


Assuntos
Microbioma Gastrointestinal , Dieta , Humanos , Estilo de Vida
9.
Adv Clin Chem ; 96: 55-84, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32362320

RESUMO

Exercise is a well-known non-pharmacologic agent used to prevent and treat a wide range of pathologic conditions such as metabolic and cardiovascular disease. In this sense, the classic field of exercise physiology has determined the main theoretical and practical bases of physiologic adaptations in response to exercise. However, the last decades were marked by significant advances in analytical laboratory techniques, where the field of biochemistry, genetics and molecular biology promoted exercise science to enter a new era. Regardless of its application, whether in the field of disease prevention or performance, the association of molecular biology with exercise physiology has been fundamental for unveiling knowledge of the molecular mechanisms related to the adaptation to exercise. This chapter will address the natural evolution of exercise physiology toward genetics and molecular biology, emphasizing the collection of integrated analytical approaches that composes the OMICS and their contribution to the field of molecular exercise physiology.


Assuntos
Exercício Físico/fisiologia , Biologia Molecular , Humanos , Lipidômica , Metabolômica , Proteômica
10.
Cell Biochem Funct ; 38(4): 500-509, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31989681

RESUMO

Sarcopenia is a multifactorial process defined by loss of strength and skeletal muscle mass, which leads to a reduction in muscle cross-sectional area (CSA). Although resistance training (RT) has been indicated as a tool to counteract sarcopenia, the protein profile associated with skeletal muscle adaptations remains to be determined. We investigated the effects of 12 weeks of RT on the skeletal muscle proteome profile and CSA of young and older rats. Twenty-four animals were divided into four groups: young sedentary or trained and older sedentary or trained (six animals per group). A 12-week RT protocol was performed, which consisted of climbing a vertical ladder. The proteins from the gastrocnemius were analysed by LC-ESI-MS/MS. One-hundred and thirty-one proteins were identified, of which 28 were assessed between the groups. Ageing induced an increase in proteins associated with the glycolytic pathway, transport and stress response, which represent crucial mechanisms for muscle adaptation. RT upregulated metabolic enzymes, anti-oxidant activity and transport proteins, besides increasing hypertrophy, regardless of age, suggesting a beneficial adaptation to mitigate age-related sarcopenia. RT reduced muscle atrophy through the regulation of stress response and by increasing proteins related to energy production and transport, which in turn might protect tissue damage arising from exercise and ageing. SIGNIFICANCE OF THE STUDY: Protein abundance levels related to the metabolic process and stress response were increased in the aged muscle. RT proved to be an important intervention capable of inducing significant effects on muscle proteome regardless of ageing, due to upregulation of glycolytic enzymes, and anti-oxidant and transport proteins. This effect could lead to a beneficial adaptation in muscle structure, cellular function and overall homeostasis maintenance. This study contributes to better understanding of the basic biology of ageing and clarifies more profoundly the molecular networks behind physiological adaptations promoted by exercise training. Therefore, the results open new perspectives and insights for studies based on transcriptomics, metabolomics and functional assays.


Assuntos
Envelhecimento/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Condicionamento Físico Animal , Proteômica , Animais , Masculino , Ratos , Ratos Wistar
11.
Clin Exp Hypertens ; 42(3): 233-238, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31122077

RESUMO

Background: This study aimed to verify the effects of high-intensity aerobic training (HIAT) on BP control and renin-angiotensin system (RAS) components in renal tissue of SHR. Ten SHRs received HIAT or control for 8-weeks. At the end of the training, the SBP showed a reduction of ~ 30mmHg (p < .01) in HIAT and increased by ~ 15 mmHg in the  control group. HIAT resulted in a higher release of nitrite, IL-6, ACE2 and ATR2. These results indicated an association between BP, NO and renal RAS.Abbreviations: JAA: writing, carried out all experimental procedures, performed statistical analysis, original draft and revised manuscript DMS: data interpretation, formal analysis, writing, editing and revised manuscript BAP: carried all experimental procedures, revised manuscritpt CPCG: carried all experimental procedures, revised manuscritpt MEN: experimental procedures, revised manuscript and data interpretation RWP: drafted and revised manuscript RCA: writing, experimental procedures, revised manuscript JP: writing, data interpretation and revised manuscript OLF: writing, original draft and revised manuscript.


Assuntos
Pressão Sanguínea/fisiologia , Hipertensão , Condicionamento Físico Animal , Sistema Renina-Angiotensina/fisiologia , Animais , Modelos Animais de Doenças , Hipertensão/fisiopatologia , Hipertensão/terapia , Rim/metabolismo , Masculino , Condicionamento Físico Animal/métodos , Condicionamento Físico Animal/fisiologia , Ratos , Ratos Endogâmicos SHR , Resultado do Tratamento
12.
Int J Gen Med ; 12: 91-100, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863135

RESUMO

BACKGROUND: Blood flow restriction (BFR) exercise has shown to induce a positive influence on bone metabolism and attenuate muscle strength loss and atrophy in subjects suffering from musculoskeletal weakness. Despite the known benefits of BFR exercise, it remains unclear whether or not the pressurization of blood vessels damages the endothelial cells or increases risk for formation of thrombi. Thus, the effects of BFR exercise on coagulation, fibrinolysis, or hemostasis, remains speculative. OBJECTIVE: The aim of the present study was to perform a systematic review of the short and long- term effects of BFR exercise on blood hemostasis in healthy individuals and patients with known disease (ie, hypertension, diabetes, obesity, and ischemic heart disease). DATA SOURCES: A systematic review of English and non-English articles was conducted across PubMed, Science Direct, and Google Scholar databases, including reference lists of relevant papers. Study quality assessment was evaluated using the modified version of Downs and Black checklist. Search results were limited to exercise training studies investigating the effects of BFR exercise on blood hemostasis in healthy individuals and patients with disease. Level of evidence was determined according to the criteria described by Oxford Center for Evidence-Based Medicine. STUDY SELECTION: Only randomized controlled trials (RCTs) and non-randomized controlled trials (NRCTs) that examined the effects of exercise with BFR exercise vs exercises without BFR on blood hemostasis in healthy individuals and patients were included. DATA EXTRACTION: Nine studies were eligible (RCT =4; NRCT =5). RESULTS: The average score on the Downs and Black checklist was 11.22. All studies were classified as having poor methodological quality wherein the level of evidence provided in all reviewed studies was level IIb only (ie, poor quality RCTs). CONCLUSION: Considering the limitations in the available evidence, firm recommendations cannot be provided.

13.
Nutrients ; 11(1)2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30641996

RESUMO

Several studies have indicated that diet and exercise may modulate the gut microbiota in obese subjects. Both interventions were shown to alter the microbiota orthogonally. However, this relationship has not been fully explored. This study analyzed the effects of low-to-moderate aerobic training on the fecal microbiota of mice subjected to a high-fat diet (HFD). Here, 40 male mice (C57Bl/6) were divided into two groups with standard diet (SD; 12.4% lipid) and HFD (60.3% lipid) for four months. These groups were divided into four, named SD control, HF control, SD trained and HF trained. All animals were submitted to an incremental test to estimate low-to-moderate maximum speed. Training consisted of 30 min·day-1, 5 days/week, for 8 weeks. The HFD increased the body weight (p < 0.0001) and adiposity index (p < 0.05). HFD also negatively influenced performance in exercise training. Moreover, the diversity of gut microbiota was reduced by the HFD in all groups. A low-to-moderate exercise was ineffective in modulating the gut microbiota composition in mice subjected to HFD. These findings suggest that two months of low-to-moderate exercise does not achieve a preponderant modulatory effect on shaping microbiota when submitted to the high-fat diet.


Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal , Condicionamento Físico Animal , Animais , Peso Corporal , DNA Bacteriano/isolamento & purificação , Fezes/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/microbiologia
14.
Front Physiol ; 9: 532, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29881354

RESUMO

Physical exercise stimulates organs, mainly the skeletal muscle, to release a broad range of molecules, recently dubbed exerkines. Among them, RNAs, such as miRNAs, piRNAs, and tRNAs loaded in extracellular vesicles (EVs) have the potential to play a significant role in the way muscle and other organs communicate to translate exercise into health. Low, moderate and high intensity treadmill protocols were applied to rat groups, aiming to investigate the impact of exercise on serum EVs and their associated small RNA molecules. Transmission electron microscopy, resistive pulse sensing, and western blotting were used to investigate EVs morphology, size distribution, concentration and EVs marker proteins. Small RNA libraries from EVs RNA were sequenced. Exercise did not change EVs size, while increased EVs concentration. Twelve miRNAs were found differentially expressed after exercise: rno-miR-128-3p, 103-3p, 330-5p, 148a-3p, 191a-5p, 10b-5p, 93-5p, 25-3p, 142-5p, 3068-3p, 142-3p, and 410-3p. No piRNA was found differentially expressed, and one tRNA, trna8336, was found down-regulated after exercise. The differentially expressed miRNAs were predicted to target genes involved in the MAPK pathway. A single bout of exercise impacts EVs and their small RNA load, reinforcing the need for a more detailed investigation into EVs and their load as mediators of health-promoting exercise.

15.
Exp Gerontol ; 100: 54-62, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29066418

RESUMO

The calcaneal tendon (CT) is the most commonly injured tendon in the human body. Moreover, with advancing age, the amount of damage increases further. Resistance training (RT) could be used to minimize such damages. The aim of the present study was to obtain the identification, detailed protein cataloging and biochemical characterization based on the effects of the aging process and the RT in CT of rats. The analysis by liquid chromatography tandem-mass spectrometry showed 142 distinct proteins, however, only 29 proteins met the inclusion criteria and were analyzed. Aging causes a reduction in the abundance of seven proteins related to extracellular matrix organization, biological regulation and cellular processes. However, RT promoted the positive regulation of proteins important for the maintenance of healthy tendons: seven proteins in young trained and two in older trained group. This study contributes to a better understanding of molecular aspects of the tendon. The down regulation of proteins linked to mechanical function and extracellular matrix remodeling of the tendon during aging can contribute to the increase of injury and weakness in the tendon. Nevertheless, RT proved to be a tool to prevent these adverse effects during aging by increasing proteins involved in the functionality of the tendon.


Assuntos
Tendão do Calcâneo/metabolismo , Envelhecimento/fisiologia , Condicionamento Físico Animal , Proteínas/metabolismo , Treinamento Resistido , Animais , Cromatografia Líquida , Matriz Extracelular/metabolismo , Masculino , Ratos , Ratos Wistar , Espectrometria de Massas em Tandem
16.
Front Chem ; 5: 4, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28184370

RESUMO

Classic studies on phylotype profiling are limited to the identification of microbial constituents, where information is lacking about the molecular interaction of these bacterial communities with the host genome and the possible outcomes in host biology. A range of OMICs approaches have provided great progress linking the microbiota to health and disease. However, the investigation of this context through proteomic mass spectrometry-based tools is still being improved. Therefore, metaproteomics or community proteogenomics has emerged as a complementary approach to metagenomic data, as a field in proteomics aiming to perform large-scale characterization of proteins from environmental microbiota, such as the human gut. The advances in molecular separation methods coupled with mass spectrometry (e.g., LC-MS/MS) and proteome bioinformatics have been fundamental in these novel large-scale metaproteomic studies, which have further been performed in a wide range of samples including soil, plant and human environments. Metaproteomic studies will make major progress if a comprehensive database covering the genes and expresses proteins from all gut microbial species is developed. To this end, we here present some of the main limitations of metaproteomic studies in complex microbiota environments, such as the gut, also addressing the up-to-date pipelines in sample preparation prior to fractionation/separation and mass spectrometry analysis. In addition, a novel approach to the limitations of metagenomic databases is also discussed. Finally, prospects are addressed regarding the application of metaproteomic analysis using a unified host-microbiome gene database and other meta-OMICs platforms.

17.
J Cell Physiol ; 232(2): 257-269, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27381298

RESUMO

Skeletal muscle plasticity and its adaptation to exercise is a topic that is widely discussed and investigated due to its primary role in the field of exercise performance and health promotion. Repetitive muscle contraction through exercise stimuli leads to improved cardiovascular output and the regulation of endothelial dysfunction and metabolic disorders such as insulin resistance and obesity. Considerable improvements in proteomic tools and data analysis have broth some new perspectives in the study of the molecular mechanisms underlying skeletal muscle adaptation in response to physical activity. In this sense, this review updates the main relevant studies concerning muscle proteome adaptation to acute and chronic exercise, from aerobic to resistance training, as well as the proteomic profile of natural inbred high running capacity animal models. Also, some promising prospects in the muscle secretome field are presented, in order to better understand the role of physical activity in the release of extracellular microvesicles and myokines activity. Thus, the present review aims to update the fast-growing exercise-proteomic scenario, leading to some new perspectives about the molecular events under skeletal muscle plasticity in response to physical activity. J. Cell. Physiol. 232: 257-269, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Proteoma/metabolismo , Humanos , Proteômica , Treinamento Resistido , Corrida
18.
BMC Physiol ; 15: 1, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25888441

RESUMO

BACKGROUND: Exercise is a non-pharmacologic agent widely used for hypertension control, where low intensity is often associated with blood pressure reduction. Maximal lactate steady state (MLSS) was recently identified in spontaneously hypertensive rats (SHRs) as an important step in establishing secure intensities for prescribing exercise for hypertensive phenotypes. Here we verified the effects of training around MLSS, 20% below MLSS, and 15% above MLSS on aerobic fitness and blood pressure status of SHR. Eighteen-week-old SHRs (n = 5, ~ 172.4 ± 8.1 mm Hg systolic blood pressure) were trained on a treadmill for 4 weeks for 30 min/day, 5 days/week at a velocity of 20 m.min(-1). After training, a novel MLSS and incremental test was performed to evaluate the animals' aerobic fitness. Furthermore, ~ 22-week-old SHRs (n = 12, ~169.8 ± 13.8 mm Hg systolic blood pressure) were divided into non-exercised (CG, n = 4), low intensity (LIG, n = 4) and high intensity (HIG, n = 4) groups, where rats were trained at 16 m.min(-1) and 23 m.min(-1) respectively for 30 min/day, 5 days/week for 4 weeks. RESULTS: Exercise performed at MLSS enhanced aerobic fitness, leading to a novel MLSS, identified around 30 m.min(-1). Low and high intensity training reduced systolic blood pressure and only high intensity training led to improved aerobic fitness (28.1%, p < 0.01). CONCLUSIONS: Therefore, our data indicate a decrease in blood pressure due to low and high exercise intensity, and an increase in aerobic fitness provided by high-intensity exercise in SHRs.


Assuntos
Pressão Sanguínea , Ácido Láctico/sangue , Condicionamento Físico Animal , Animais , Modelos Animais de Doenças , Feminino , Masculino , Ratos , Ratos Endogâmicos SHR
19.
Exerc Immunol Rev ; 21: 70-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25825908

RESUMO

The gut microbiota consists of a cluster of microorganisms that produces several signaling molecules of a hormonal nature which are released into the blood stream and act at distal sites. There is a growing body of evidence indicating that microbiota may be modulated by several environmental conditions, including different exercise stimulus, as well some pathologies. Enriched bacterial diversity has also been associated with improved health status and alterations in immune system, making multiple connections between host and microbiota. Experimental evidence has shown that reduced levels and variations in the bacterial community are associated with health impairments, while increased microbiota diversity improves metabolic profile and immunological responses. So far, very few controlled studies have focused on the interactions between acute or chronic exercise and the gut microbiota. However, some preliminary experimental data obtained from animal studies or probiotics studies show some interesting results at the immune level, indicating that the microbiota also acts like an endocrine organ and is sensitive to the homeostatic and physiological changes associated with exercise. Thus, our review intends to shed some light on the interaction between gut microbiota, exercise and immunomodulation.


Assuntos
Exercício Físico/fisiologia , Microbiota/imunologia , Esforço Físico/imunologia , Animais , Translocação Bacteriana , Dieta , Modelos Animais de Doenças , Sistema Endócrino/fisiologia , Ácidos Graxos Voláteis/biossíntese , Ácidos Graxos Voláteis/metabolismo , Fermentação , Homeostase , Humanos , Hipersensibilidade/epidemiologia , Hipersensibilidade/imunologia , Hipersensibilidade/microbiologia , Sistema Imunitário/crescimento & desenvolvimento , Imunomodulação , Intestinos/crescimento & desenvolvimento , Intestinos/microbiologia , Microbiota/fisiologia , Modelos Imunológicos , Neurotransmissores/biossíntese , Neurotransmissores/metabolismo , Prebióticos , Probióticos , Estresse Fisiológico/imunologia , Estresse Fisiológico/fisiologia
20.
J Proteomics ; 113: 351-65, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25451014

RESUMO

NanoUPLC/MS(E) was used to verify the effects of 8weeks of low (SHR-LIT=4) and high (SHR-HIT=4) intensity training over the left ventricle proteome of hypertensive rats (SHR-C=4). Training enhanced the aerobic capacity and reduced the systolic blood pressure in all exercised rats. NanoUPLC/MS(E) identified 250 proteins, with 233 in common to all groups and 16 exclusive to SHR-C, 2 to SHR-LIT, and 2 to the SHR-HIT. Cardiac hypertrophy related proteins appeared only in SHR-C. The SHR-LIT enhanced the abundance of 30 proteins and diminished 6, while SHR-HIT enhanced the abundance of 39 proteins and reduced other 7. The levels of metabolic (ß and γ-enolase, adenine phosphoribosultransferase, and cytochrome b-c1), myofibril (myosin light chain 4, tropomyosin α and ß-chain), and transporter proteins (hemoglobin, serum albumin, and hemopexin) were increased by both intensities. Transcription regulator and histone variants were enhanced by SHR-LIT and SHR-HIT respectively. SHR-LIT reduced the concentration of myosin binding protein C, while desmin and membrane voltage dependent anion selective channel protein-3 were reduced only by SHR-HIT. In addition, polyubiquitin B and C, and transcription regulators decreased in both intensities. Exercise also increased the concentration of anti-oxidant proteins, peroxiredozin-6 and glutathione peroxidase-1. BIOLOGICAL SIGNIFICANCE: Pathologic left ventricle hypertrophy if one of the major outcomes of hypertension being a strong predictor of heart failure. Among the various risk factors for cardiovascular disorders, arterial hypertension is responsible for the highest rates of mortality worldwide. In this way, this present study contribute to the understanding of the molecular mechanisms involved in the attenuation of hypertension and the regression of pathological cardiac hypertrophy induced by exercise training.


Assuntos
Cardiomegalia/metabolismo , Ventrículos do Coração/metabolismo , Proteínas Musculares/metabolismo , Condicionamento Físico Animal , Proteoma/metabolismo , Proteômica , Animais , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Cardiomegalia Induzida por Exercícios , Ventrículos do Coração/fisiopatologia , Masculino , Ratos , Ratos Endogâmicos SHR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...